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SUMMARY AND CONCLUSION _

This paper investigates the mathematical relationships between

_the shape parameter _ and estimates of reliability and a life limi_

,_ _. lower bound for the two parameter Weibull distribution..- :rt =shows--_--

_-_that under rather general conditions, both the reliability lower
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bound and the allowable life limit lower bound (often called a

tolerance limit) have unique global minimums over a range of=_- --

Hence lower bound solutions can be obtained without assuming or

estimating _P:The existence and uniqueness of these lower bounds

are proven _n the Appendix. Some real data examples are given to

show how these lower bounds can be easily established and to

demonstrate their practicality. The method developed in the paper

has proven to be extremely useful when using the Weibull

distribution in analysis of no-failure or few-failures data. The

results are applicable not only in the aerospace industry but

anywhere that system reliabilities are high.

INTRODUCTION

The two parameter Weibull distribution is widely used for

reliability and life limit estimations. However, there is often
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insufficient information, e.g., failure data, to accurately

estimate the shape parameter _ of the distribution. Traditionally,

either a value of_ is assumed and then used to establish the scale

parameter _ and estimate a reliability lower bound, or a

nonparametric method is invoked to estimate a reliability lower

bound. In the former situation the assumption of _ is often

controversial and difficult to justify. In the latter case, the

reliability bound estimated is usually too conservative. This paper

presents an alternate method which attempts to overcome the

drawbacks in the traditional methods.

Notation:

Cdf

n

r

ti

tm

zi

T

R

Tc

Rc

NOTATION AND ASSUMPTION

Cumulative distribution function

Weibull distribution shape parameter (slope value)

Weibull distribution scale parameter (characteristic

value)

Estimate of any parameter, p

Total number of test units

Number of failed units

Operating time (seconds, cycles)

max(tl,t2,...,tn)

ti/tm, normalized time

Specific operating time or life limit lower bound

Reliability for a given life limit

Conditional life limit lower bound

Conditional reliability
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MTBF

T

Ln

Mean time between failure

Confidence level

Natural logarithmn

Assumption:

For the hardware units, the distribution of operating time to

failure is the 2-parameter Weibull.

MATHEMATICAL RESULTS

The 2-parameter Weibull Cdf is:

F(t) = 1 - EXP(-(_)_), t>0 (i)

Where t is a variable generally given in terms of time or cycles,

is the shape or slope parameter of the distribution and _ is the

scale or characteristic life parameter. Assume n units are tested.

Let tl,t2,...,t r be failure data and tr+l,tr+2,...,tn

be censored data (either failure censoring or time censoring).

A lower bound on _ results from the fact that if t is

distributed as Weibull (fi,_) then t_ has an exponential

distribution with MTBF parameter _. Thus given a value of fi, a

100T percent confidence lower bound on a (Refs. 1 - 4) is given by:

A _tifi 1/8

= ( c(T) ) ' (2)

where c(T) is a positive constant which depends on the confidence

level r, the number of failures r and the censoring scheme. For

example, for type II censoring, c(T) = .5*X2T,2r; for type I

censoring with replacement, c(T) = .5*X2r,2r+2 (Ref. 4), where

X2T,k is the 100T percentile of the Chi-square distribution with

degrees of freedom k.
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With high reliability systems a value of _ is frequently hard to

come by. Either there are no failures in which case _ cannot be

estimated or there are few failures in which case the estimate of

is subject to considerable uncertainty, and no assumption about

based on similar failure modes or similar hardware is available.

Fortunately, it turns out that under certain conditions, which are

not so restrictive, reliability for a given life or life limit for a

given reliability experiences a minimum value as a function of _. In

other words there is a "worst case _", say _0, such that

reliability or life limit attains a strict minimum when _=_0- The

equations and conditions are shown below.

Reliability lower bound:

When the unit is tested to time T, it is easily seen that the

100r percent confidence lower bound on reliability is

^ ^ T_ T_

R m R(_) = EXP( _--_--) = EXP( - c(r) Z-_ 1 ) (3)

Theorem i: Under the condition: (tlt2...tn)i/n < T <

max(tl,t2,...,tn), there exists a unique _0>0 such that

R(_) > R(_0), for all _ > 0 and _ + _0;

and R(_) is a monotone increasing function of _ when _ _ _0,

and R(_) is a monotone decreasing function of _ when _ N _0-

For all theorems presented here, when the conditions are not met,

the function in question is either monotonically increasing or

monotonically decreasing over the range of _, in either case a worst

case _ does not exist.

Allowable life limit lower bound:

Assuming the reliability is a given constant R, we solve for T
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from (3), then a 100r percent confidence lower bound on allowable

life limit (tolerance limit) is

_ti_ i/_

T _ T(_) = ( - Ln(R) c(r) ) (4)

Theorem 2: Under the condition: k < c(r)/(-Ln(R)) < n, where k =

number of ti's with values = max(tl,t2,...,tn) ,

there exists a unique _0>0 such that:

T(8) > T(80), for all _ > 0 and _ + 80;

and T(_) is a monotone increasing function of 8 when 8 _ 80,

and T(8) is a monotone decreasing function of _ when 8 S 80-

Rocket engine reliability is more commonly thought of in terms

of mission reliability rather than life time reliability. Thus

there is interest in the reliability of the next t O second

mission given that the unit has already accumulated T-t 0 seconds.

The equations and conditions for the conditional reliability and

life limit are given below.

Conditional reliability lower bound:

We define the conditional reliability R c as the probability

that the unit will not fail during the next t O seconds, given

that the unit has survived the first T-t 0 seconds. Then R c is

computed by

Re = EXP( - TS-(T-t0)8_ ). (5)

Substituting equation (2) into equation (5), we get the 100r percent

confidence lower bound on Rc:

^ A

R c _ Rc(8 ) = EXP( - c(r) T_-(T-tQ)8
Zti_ ) (6)

Theorem 3: Under the conditions: 0<t0<T<max(tl,t2,...,tn)

and Zti(l+Ln(T/ti))<0 there exists a 80>1 such that
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- 0_0T_0 -1)Rc(_) _ EXP(-c(T) t , for all 8>1. (7)

_ti _0

Conditional operatinq life limit lower bound:

We frequently need to assess a lower bound for a conditional

operating life limit Tc which is defined by (5) for a given

conditional reliability Rc. While Tc can not be explicitly

solved for from (5), it can be treated as an implicit function of

other variables.

Theorem 4. Under the conditions:

to) and Zti*Ln(tt-_0 ) > 0 (8)Rc < EXP( - c(T)Zti

there exists a _0 > 1 such that

_t]_0 _/(_0-I) for all _>i. (9)
Tc(_) _ ( -Ln(Rc)c(T)_0t0

Note that Theorems 3 and 4 have been restricted to _>i (wear

out type failures). Similar work for _i (infant mortality type

failures and constant failure rate type failures) will be the

subject of a future paper.

The proofs of the Theorems 1 to 4 are given in the Appendix

and a computer program has been written to solve for the _0's

and the minimums.

ILLUSTRATIVE EXAMPLES

Example I. Of the 59 units of a particular component that were

tested only one failed. The operating times (seconds) of the 59

units are: 14176 (failure), 28587, 20359, 18248, 17256, 16769,

13890, 13357 13118, 13118, 13061, 12893, 12640, 11878, 11858,

10378, 8172, 7918, 7379, 7326, 6700, 6442, 6263, 6168, 5809, 5383,

5305,4788, 4788, 4784, 4748, 4701, 4453, 4258, 3696, 3145, 3138,
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3059, 2867, 2837, 2777, 2438, 2300, 2178, 2027, 1807, 1739, 1567,

1384, 1357, 1303, 1161, 1062, 1062, 1042, 903, 819, 299, 299.

We wish to use the Weibull distribution to assess the

reliability lower bound at the 50% confidence level for a new unit

operated for i0,000 seconds.

Since we have just one failure, we are not able to obtain a

good estimate of 8. Using Theorem 1 with:

T = .50; c(T) = X_T,4=3.357 and T = i0,000 seconds,

lOOOO8

we have R(8) = EXP( -.5*3.357 Eti_ )

From Theorem i, we know there exists a unique 80>0 (Figure i) such

such that

A

R(8) _ R(_0) for all 80>0.

The computer program computes: 80 = 1.083 and R(80) = .958.

Therefore we may conclude with 50% confidence that the reliability

of a unit operated for i0,000 seconds is at least .958.

Example 2. Sixteen units of a particular component experienced the

following cycles with no failure: 35, 31, 26, 21, 40, 30, 38, 27,

23, 38, 18, 19, 12, 14, 13, 9. Given these data, what is the

minimum number of tests which can be run without failure at .95

reliability and 50% confidence level?

We have: R=.95, T=.50 and c(T)=.5*X2r,2=l.386. Using Theorem

2 (see Figure 2), we get:

80 = 1.529 and T(80) = 28.6 starts

So we conclude that at the 50% confidence level and 0.95 reliability,

the component could be tested for at least 28 cycles without failure.
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A N = 59
R [8) r = 1

T = i0,000 sec.
r =..50

1

.958

0 80=i.083 _8

Fig.l Example of Theorem 1

t
m

=40

28.6

N = 16

i_l) r = 0

R = .95

T = .50

0 80=1.529 8

Fig.2 Example of Theorem 2

Example 3. Using the data in Example 1 compute the 90% confidence

lower bound on reliability for 520 seconds of operation given that

the unit had already operated for 5000 seconds without failing.

We have T=5,000+520=5520 seconds, t0=520 seconds, r=.90 and

c(r)=.5*X2r,4=7.779. Using Theorem 3 (see Figure 3), we get:

80 = 1.321 and equation (7) gives

Rc(8 ) > EXP( - 5*7 779520.1"321.55201"321-1
- " " 1.321

Zti

Thus we conclude, with 90% confidence, that the conditional

reliability of a unit operating for 520 seconds given that it had

already operated for 5000 seconds is at least .9945.

Example 4. Again using Example 1 data compute the life limit such

that a 520 second operation reliability of at least .99 is

guaranteed at the 95% confidence level.

We have t0=520 seconds, r=.95, c(r)=.5*X2r,4=9.488 and

Rc=.99. Using Theorem 4 (see Figure 4), we get:

80 = 2.188 and equation (9) gives

Zt i2.188 I/(2 188-I)
Tc(8) _ (-Ln(- 99) .5,9.488,2.188,520 )

) = .9945, for all _>i.

AR&MS : #9 IRM-037 8



=9,486 seconds, for all _>i.

So we see, in order to meet 0.99 reliability lower bound at 95%

confidence level, the conditional life limit is at least 9,486

seconds.

1

N = 59

r = 1

T = 5520 sec.

t = 520 sec.
0

T = .90

.9945

0 1 80=1.321 _

Fig.3 Example of Theorem 3

Tc(8)

(seclnds)

t =i---
m

28587

9486

N = 59

r = 1

R = .99
c

7 = .95

t O = 520 sec.

0 1 80=2. 188 8 _

Fig.4 Example of Theorem 4

APPENDIX

I. Proof of Theorem i:

^ r8
From (3), we get: R(_) = EXP( -c([)Zt--_ 1 )

A

It is obvious that finding a minimum for R(_) is equivalent to

finding a minimum for g(_) m E(ti/T)8.

The first derivative and the second derivative of g(_) are

g' (,B) = Z: Ln(__..,_),(__.__)_i-_ r_-;__

and g"(B) = 2(Ln )2,( )8

From (i. 2) , and the given condition:

(tlt 2...tn )I/n < T < max(t l,t 2,...,tn),

(1.1)

(1.2)

(1.3)

we see g"(_)>O. So g' (8) is a strictly monotone increasing function

of 8. Also because of (1.3), we have
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and _im+_g' (8)=+o>0. Therefore there exists a unique 80>0 such

that :

g' (80)=0 and g(8) attains a minimum at 80;

and g(8) is a monotone increasing function of _ when _>-_0,

and g(8) is a monotone decreasing function of _ when _<80.

Transferring the result from g(8) back to R(_), we conclude

the Theorem I.

2. Proof of Theorem 2:

From (4) we get T(8) = (-Ln(R)c(T))

Using the notations tm=max(tl,t2,...,tn), zi=ti/tm,

i=l,2,...n; and C=-Ln(R)/c(7). We have

(CT_zi_)i/_ = Exp(Ln(C)+Ln(T.zi_)=
tm 8 ) (2. i)

A

Define h(8) = (Ln(C)+Ln(T.zi_)). We have T___)= EXP(h(_)).
tm

The first derivative of h(_) is

RZLn(zi)zi8
h' (_) = ( -LnC + :_ 7.zi _ _ Ln(EziS) ) / _2

Defining h I(8) = -LnC + _ ELn(zi )zi_
Ezi_ - Ln(Ezi_ ) ,

we have h' (8) = hl(_)/82 - The first derivative of hl(_ ) is

ELn(zj)_i_ (E(Lnzi) 2 zi 8) (T.ziS)-(Ln(zi)zi_) z
hl' (8) = EziiT + _ (Ezi_)2

ELn(z i) zi_

EziP

= 8 (X (Lnzi) _ z_- (7_Ln (z i ) zi_) 2
(EziP) 2

Using the Cauchy Inequality (Ref.6, Page Ii) , we have h I' (8)->0-

But by the given condition k<c(r)/(-Ln(R))<n, where k=number of

(2.2)

(2.3)

AR&MS: #91RM-037 i0



ti's with values=tm, the equality does not hold. So

hl' (8)>0- Hence hI(_) is a strictly monotone increasing

function of _.

Using the condition k<c(_)/(-Ln(R))<n again, we have

81i_ hl(_) = -LnC + 0 - nn(n) = -Ln(Cn) < 0

and .lim_hl(#) = -LnC + 0 - Ln(k) = -Ln(Ck) > 0.

Therefore, there exists a unique #0>0 such that hl(_0)=0,

and hl(_)<0 when _<_0,

and h I(_)>0 when _>-_0-

Noticing hl(8)=h ' (8)*# z , we can conclude there exists a unique

80>0 such that h' (_0)=0 and h(_) attains a minimum at 80;

and h(8) is a monotone increasing function of 8 when #->80,

and h(8) is a monotone decreasing function of 8 when #<#0-

Transferring the result from h(#) back to T(#), we conclude

the Theorem 2.

3. Proof of Theorem 3:

From (6) , we have

" T_- (T-t0)

Rc(# ) = EXP(-c(T) _ti _ )

Using the notations defined in the Notation Section, we have

-Ln (Rc (8)) = (T/tin) _- ((T-t0)/tm_
c(r) zzi_

Using the first order Taylor expansion, R.H.S.

of (3 !) = _(to/tm) ((T-St0)/tm)_ -I
" 7_zi_ , where 0<8<1

,Ln(Rc.(_))< _(to/tm) (T/t_m/_!
Considering #>i, we get c(r) 7.zi_ _ z(8)

Define z I(#) = Ln(z(8)tm/t0_ = Ln_+(E-1) Ln(T/tm)-Ln(Zzi#).

(3.1)

(right hand side)

(3.2)
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The first derivative and the second derivative of Zl(8) are

1 _m Ezi_Lnzi (3 3)zl' (8) = _ + Ln( ) - 7.zi _

1 (Ezi_(Lnzi)') (7zi_)-(_zi/_Lnzi)Z (3.4)
Zl"(8) = _z (7zi_)2

By the Cauchy Inequality, the second term of R.H.S. of (3.4) < 0.

So Zl"(8)<0. Therefore z I' (8) is a strictly monotone

decreasing function of 8- Because of the given conditions, we also

have

_]im:;y z I' (_) = l+Ln(T__)tm _ EziLnZiEzi > 0

and _li_zl' (8) = 0 + Ln(T/tm) - 0 < 0.

So there exists a unique _0>0 such that z I' (8)=0 and Zl(_)

attains a maximum at _0. But noticing

z (8) = (t0/tm) EXP (Zl (_)),

we could extend the result to z(_). So we have

A

-Ln(Rc_(_))< _toT_ -I _0t0T _0-I

C(T) -- 7ti _ -- Z(8) -< Z(_0) =- Eti_ 0 ,

That is, Rc(_) >_ EXP(-c(T)t0_QT_0-1), for all _>I.

Eti 80

4. Proof of Theorem 4:

From (6) , we have

-LnR C = Tc_ - (To-t0)

C(T) 7ti;3

for all 8>1.

(Tc/tm) 8- ((To-to)/tin)

_= Ezi_ (4. i)

First, we have to show, for any Rc, C(T), to, _, ti's and

under the given conditions (8), a unique Tc=Tc(_) can be solved for

from (4.1) .

Define f(Tc) Tc__(Tc_t0 )__Tti _.-LnRc- (c(T) ) "

Taking the derivative with respect to Tc, we have
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L=

f' (Tc) =_Tc_-I-_ (Tc-t0)_-l>0.

We also have Tcli_ f(Tc) = +_ >0 and

Tcli_0f(Tc) = t0_ - 7.ti_ c-L--L_' c('r)' < O, because of (8).

A

Therefore, a unique solution Tc_Tc(_) exists for the equation (4.1).

Using a Taylor expansion, we have

-LnR C t_ ((Tc-et0)/tm)_-i

c(r) = Zzi_ , where 0SeSl (4.2)

A

Solving for Tc(_) from (4.2), we have

A

= -LnRn _ tm I/(_-13 _m( +e
t m c(r) _ to )

.-LnR c _ tm i/(_-i)

> [ c(T)' _ to ) - w(_)

Let W _ tm(-LnRc)/C(T)/t0, (constant, independent of 8) and

Wl(_) = Lnw(/3) - LnW+Ln(_'zi_)-Ln_
_-i

The first derivative of Wl(_ ) is

w1' (#) =

Ezi#Lnz i

-LnW Ezi# (#-i) -Ln (Ezi#) (_-I)/_-Ln_
+

(_-i) _ (_-i)_ (_-i)_

-l+I/_-LnW+Ln_+ Ezi_Lnzi
Ezi_ (_-l)-Ln(Zzi_)

(#-z)_
(4.3)

Let the numerator of R.H.S of (4.3) = w2(_). Then

_-i Ezi_Lnz i

w2'(P) = _= + Zzi#

EziP

+ (_-l)(Ezi_(Lnz])2) (Ez_@ [T(Ezi_Lnzi)_
(Zzi#)f

£-I (Ezi_(Lnzi) 2) (Ezi_)-(Ezi_Lnzi)'

_, + (_-i) (7.zi_)'
(4.4)

Using the Cauchy Inequality and noticing _-i>0, we have w2'(_)>0.

So w2(_) is a strictly monotone increasing function of _.

Using the given condition: R c < EXP( -c(r)E_i ), we have
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81i_ W2 (8) = -LnW - Ln(T.zi) < 0

and 81i_ w2 (8) = +_ > 0.

So there exists a unique _0>I such that w 2 (_0) = 0 and

w 2(_) < 0 when 8 < _0; w2(8) > 0 when 8 > 80.

w_ (B!
But w I' (_)=(8-I) , so the same conclusions hold for w I' (8) for 8>1.

Therefore, Wl(_ ) attains a minimum at 80- Hence w(8)mEXP(wl(P))

attains a minimum at 80- That is,

A

._ zz_Aif/t_m 1/(8o-I)
> w(8) > w(_0)=(c(r) to )tm - - 80

^ 7ti _0 i/(_0-i)

Therefore we have: Tc(_) > (-Ln(RC)c(7)80t0)
, for all _>i.
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